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5.4 Invariant Subspaces and Cayley-Hamilton theorem

The goal of this section is to prove the Cayley-Hamilton theorem:

Theorem 1. Let T : V → V be a linear operator, V finite dimensional, and
let f(t) be the characteristic polynomial of T . Then f(T ) = T0 i.e. the zero
linear transformation. In other words T is a root of its own characteristic
polynomial.

Here, if f(t) = ant
n + an−1t

n−1 + ...+ a1t+ a0, plugging in T means the
transformation

f(T ) = anT
n + an−1T

n−1 + ...+ a1T + a0I

Let us give some simple examples:

Example 1 The identity I : F 3 → F 3 has characteristic polynomial f(t) =
(1− t)3. Then f(I) = (I − I)3 = T0.

Example 2 Let A =

1 0 5
0 1 0
0 0 2

. Then the characteristic polynomial is

f(t) = (1−t)2(2−t), and f(A) = (A−I)2(2I3−A) =

0 0 5
0 0 0
0 0 1

21 0 5
0 1 0
0 0 0

 =

O.

We will prove the main theorem by using invariant subspaces and showing
that if W is T -invariant, then the characteristic polynomial of T �W divides
the characteristic polynomial of T . So, let us recall the definition of a T -
invariant space:

Definition 2. Given a linear transformation T : V → V , a subspace W ⊂ V
is called T -invariant if for all x ∈ W , T (x) ∈ W . For such a W , let
TW : W →W denote the linear transformation obtained by restricting T to
W i.e. for all x ∈W , TW (x) = T (x) ∈W .

Examples:

(1) V , {~0},
(2) ker(T ), ran(T ),

1
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(3) Eλ for any eigenvalue λ for T .

Let us prove the last item: suppose that v ∈ Eλ. We have to show that
T (v) ∈ Eλ. Denote y = T (v) and compute

T (y) = T (T (v)) = T (λv) = λT (v) = λy.

So, y is also an eigenvector for λ. Then y = T (v) ∈ Eλ as desired.
Next we give another important example of an invariant subspace.

Lemma 3. Suppose that T : V → V is a linear transformation, and let
x ∈ V . Then

W := Span({x, T (x), T 2(x), ...})
is a T -invariant subspace. Moreover, if Z is any other T -invariant subspace
that contains x, then W ⊂ Z.

Proof. First we show that W is T -invariant: let y ∈ W . We have to show
that T (y) ∈ W . Since y ∈ W , by definition, for some natural number n,
y = Tn(x). Then T (y) = Tn+1(x) ∈W .

Now suppose that Z is another T -invariant subspace with x ∈ Z.

Claim 4. For every n ≥ 1, Tn(x) ∈ Z.

Proof. For the base case n = 1, since x ∈ Z and Z is T -invariant, it follows
that T (x) ∈ Z.

For the inductive case, suppose that Tn(x) ∈ Z. Then again, by T -
invariance, we have that Tn+1(x) ∈ Z. �

By the claim, we get that W ⊂ Z.
�

W as above is called the T -cyclic subspace of V generated by x.

Example. Let T : R3 → R3 be given by T (〈a, b, c〉) = 〈2a, a + b, 0〉.
Find the T -cyclic subspace of V generated by e1.

Solution:

• T (e1) = 〈2, 1, 0〉,
• T 2(e1) = T (〈2, 1, 0〉) = 〈4, 3, 0〉, and so on

Note that T 2(e1) is a linear combination of e1, T (e1). Similarly, for any n,
Tn(e1) = 〈a1, a2, 0〉 for some a1, a2, and so it is a linear combination of e1
and T (e1). It follows, that the T -cyclic subspace of V generated by e1 is
Span({e1, T (e1)}) = {〈a1, a2, 0〉 | a1, a2 ∈ R} = Span({e1, e2}).

Our next lemma generalizes the above example:

Lemma 5. Suppose that T : V → V is linear, let W be the T -invariant
cyclic subspace generated by x (nonzero vector) with dim(W ) = k. Then
{x, T (x), ..., T k−1(x)} is a basis for W

Proof. Let m be the largest such that α = {x, T (x), ..., Tm−1(x)} is a linearly
independent. Such m has to exists because W is finite dimensional. Then
we have:
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• m ≤ k, since α ⊂W and dim(W ) = k, and
• Tm(x) ∈ Span(α), by definition of m.

Let Z = Span(α). We claim that Z = W . We know that Z ⊂ W because
α ⊂W . For the other direction, by the second part of Lemma 3, it is enough
to show that Z is T -invariant.

To that end, let y ∈ Z; write is a linear combination of the vectors in α,

y = a1x+ a2T (x) + ...+ amT
m−1(x).

Compute

T (y) = T (a1x+a2T (x)+...+amT
m−1(x)) = a1T (x)+a2T

2(x)+...+amT
m(x).

This is a linear combination of vectors in α and Tm(x). Since Tm(x) ∈
Span(α), we get T (y) ∈ Span(α) = Z.

Then α is a basis for W , and so m = |α| = k. �

Before we prove that the characteristic polynomial of TW divides the
characteristic polynomial of T where W is T -invariant, we need the following
fact.

Fact 6. Suppose we have an n× n matrix B of the form

B =

(
A C
0 D

)
,

Where A is a k × k matrix. Then det(A) · det(D)

Proof. The proof is by induction on k, expanding along the first column. �

Lemma 7. Suppose that T : V → V is linear, V finite dimensions, and W
is a T -invariant subspace. Let TW : W → W be the linear transformation
obtained by T restricted to W . Then the characteristic polynomial of TW
divides the characteristic polynomial of T .

Proof. Let α = {v1, ..., vk} be a basis for W , and extend α to a basis β =
{v1, ...vk, ...vn} for V . Let A = [TW ]α and B = [T ]β. Then

B =

(
A C
0 D

)
So,

(B − tIn) =

(
A− tIk C

0 D − tIn−k

)
Then det(B − tIn) = det(A − tIn)g(t). Since the characteristic polynomial
of TW is det(A− tIn) and the characteristic polynomial of T is det(B− tIn),
the result follows. �

Lemma 8. Suppose that T : V → V is linear, V finite dimensional, and let
W be the T -invariant cyclic subspace generated by x (nonzero vector) with
dim(W ) = k. Then there are unique scalars a0, ..., ak−1, such that

• a0x+ a1T (x) + ...ak−1T
k−1(x) + T k(x) = ~0, and
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• the characteristic polynomial of TW is

f(t) = (−1)k(a0 + a1t+ ...ak−1t
k−1 + tk).

Proof. Recall that we proved α = {x, T (x), ..., T k−1(x)} is a basis for W .
That means that T k(x) is the span of these vectors and the linear combina-
tion is unique. So for some unique scalars a0, ..., ak−1, we get:

a0x+ a1T (x) + ...+ ak−1T
k−1(x) + T k(x) = ~0.

Next we compute [TW ]α. We have:

• TW (x) = 0x+ T (x) + 0...+ 0, so [TW (x)]α = 〈0, 1, 0, ...0〉,
• TW (T (x)) = T 2(x) = T 2

W (x), so [TW (x)]α = 〈0, 0, 1, ...0〉,
• ...
• TW (T k−1(x)) = T k(x) = −1(a0x+a1T (x) + ...ak−1T

k−1(x)), and so
[TW (T k−1(x))]α = 〈−a0,−a1, ...− ak−1〉,

Then

[TW ]α =


0 0 ... 0 −a1
1 0 ... 0 −a2
...
0 0 ... 1 −ak−1


One can verify that this matrix has characteristic polynomial

f(t) = (−1)k(a0 + a1t+ ...ak−1t
k−1 + tk)

. �

We are finally ready to prove the Cayley-Hamilton theorem:

Proof of Theorem 1. We have to show that T “satisfies” its characteristic
polynomial. So let f(t) be the characteristic polynomial of T . Then we
have to show that f(T ) is the zero linear transformation. So let x ∈ V . We

have to show that f(T )(x) = ~0.
Assume that x is nonzero (otherwise it’s clear). Let W be the T -cyclic

invariant subspace generated by x; dim(W ) = k. By the above lemma, fix
coefficients a0, ..., ak, such that

• a0x+ a1T (x) + ...ak−1T
k−1(x) + T k(x) = ~0, and

• the characteristic polynomial of TW is

g(t) = (−1)k(a0 + a1t+ ...ak−1t
k−1 + tk).

Then,

g(T )(x) = (−1)k(a0I + a1T + ...ak−1T
k−1 + T k)(x) =

(−1)k(a0x+ a1T (x) + ...ak−1T
k−1(x) + T k(x)) = ~0.

And since g divides f , we get that f(T )(x) = 0.
�
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6.1, 6.2 Inner Product Spaces and ONB

Let c ∈ F , we will use c̄ to denote complex conjugation. I.e. if c = a+ bi,
then c̄ = a− bi. If c ∈ R, then c̄ = c.

Definition 9. Let V be a vector space over F . V is an inner product
space, if we can define an inner product function on pairs of vectors to
values in F ,

(x, y) 7→ 〈x, y〉 ∈ F
with the following properties:

(1) 〈x+ z, y〉 = 〈x, y〉+ 〈z, y〉
(2) 〈cx, y〉 = c〈x, y〉,
(3) ¯〈x, y〉 = 〈y, x〉,
(4) if x 6= ~0, 〈x, x〉 > 0,

Definition 10. Let V be an inner product space. For x ∈ V , define the
norm of x,

||x|| =
√
〈x, x〉.

Lemma 11. (Properties of inner product spaces) Let V be an inner product
space, and x, y, z ∈ V , c ∈ F . Then

(1) 〈x, y + z〉 = 〈x, y〉+ 〈x, z〉
(2) 〈x, cy〉 = c̄〈x, y〉,
(3) 〈x, 0〉 = 〈0, x〉 = 0,

(4) 〈x, x〉 = 0 iff if x = ~0,
(5) if 〈x, y〉 = 〈x, z〉 for all x, then y = z.

Lemma 12. (Properties of norms) Let V be an inner product space over
F , and x, y, z ∈ V , c ∈ F . Then

(1) ||cx|| = |c| · ||x||,
(2) ||x|| ≥ 0, ||x|| = 0 iff if x = ~0,
(3) (Cauchy-Schwarz inequality) |〈x, y〉| ≤ ||x|| · ||y||,
(4) (Triangle inequality) ||x+ y|| ≤ ||x||+ ||y||.

Examples:

(1) The usual dot product for Rn over R: 〈x, y〉 = Σ1≤i≤nxiyi;
(2) The conjugate dot product for Cn over C: 〈x, y〉 = Σ1≤i≤nxiȳi;

Definition 13. Let V be an inner product space. Two vectors x, y in V are
called orthogonal (or perpendicular) if 〈x, y〉 = 0.

A vector x in V is called normal if ||x|| = 0.
A set S is called orthonormal if any two vectors from S are orthogonal

and each x ∈ S is normal.

Lemma 14. If S is a set of pairwise orthogonal nonzero vectors, then S is
linearly independent. So, orthonormal sets are linearly independent.
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Proof. Suppose
a1v1 + ...+ akvk = ~0

for vectors v1, ...vk in S. Suppose for contradiction some of the ai’s are non
zero. By rearranging if necessary, we may assume that a1 6= 0. Then

0 = 〈a1v1 + ...+akvk, v1〉 = a1〈v1, v1〉+a2〈v2, v1〉+ ...ak〈vk, v1〉 = a1〈v1, v1〉.
By assumption v1 6= ~0, and so by the properties of inner products 〈v1, v1〉 >
0, so a1 = 0. Contradiction �

Using a process called Gram-Schmidt orthogonalization, we can obtain
an orthonormal set from any basis, and get the following theorem:

Theorem 15. Let V be an inner product space of dimension n > 0. Then
there is an orthonormal basis for V (ONB).

Example: the standard basis is an ONB for Fn.

The next lemma illustrates the usefulness of ONBs, in the sense that we
can determine in advance the coefficients of linear combinations and matrix
representations.

Lemma 16. If β := {v1, ..., vn} is an ONB for V and T : V → V is linear,
then

(1) For every x ∈ V ,

x = 〈x, v1〉v1 + 〈x, v2〉v2 + ...+ 〈x, vn〉vn
(2) If A = [T ]β, then the (i, j)-th entry of the matrix is Aij = 〈T (vj), vi〉.

Proof. We show the first part. The second is left as an exercise. Fix x ∈ V .
Say x = a1v1 + ...+ anvn. Then for each 1 ≤ i ≤ n,

〈x, vi〉 = 〈a1v1 + ...+ anvn, v1〉 = Σkak〈vk, vi〉 = ai〈vi, vi〉 = ai.

The above is since for k 6= i, 〈vk, vi〉 = 0 and 〈vi, vi〉 = 1.
�

Definition 17. Let S ⊂ V be nonempty, V a inner product space. The
orthogonal complement of S is

S⊥ = {x ∈ V | 〈x, y〉 = 0 for all y ∈ S}

Fact 18. For any nonempty set S, S⊥ is a subspace.

A couple of examples:

• {~0}⊥ = V ; V ⊥ = {~0},
• in F 3, {e1}⊥ = Span({e2, e3}).

6.3, 6.4 Adjoint operators and the Spectral theorem

Let us first look at matrices:
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Definition 19. Let A ∈Mm×n(F ). The conjugate transpose of A is the
n ×m matrix A∗ given by setting A∗ij = Āji i.e. we take the conjugate of

each entry and transpose it. We also write A∗ = Āt.

We can also define the adjoint for a linear transformations in general.

Theorem 20. Let T : V → V be a linear operator on a finite dimensional
inner product space. Then there is a linear transformation T ∗ : V → V ,
such that for all x, y ∈ V ,

〈T (x), y〉 = 〈x, T ∗(y)〉.
T ∗ is called the adjoint of T .

Moreover, if β is an ONB, then [T ∗]β = [T ]∗β.

The following is a key lemma:

Theorem 21. (Schur) Suppose that the characteristic polynomial of T splits.
Then there is an ONB β such that [T ]β is upper triangular.

Proof. (Outline) By induction on dim(V ). The idea is to pick one eigenvalue
(it exists since the characteristic polynomial splits), then a corresponding
eigenvector z. Then prove that W := Span(z)⊥ is T -invariant and apply
the inductive hypothesis to TW .

�

Next we give a condition for a diagonalizability over R.

Definition 22. A linear transformation T : V → V is self-adjoint (Her-
mitian) if T = T ∗. Similarly, a matrix A is self-adjoint (Hermitian) if
A = A∗.

Lemma 23. If T is self adjoint, then every eigenvalue is real and the char-
acteristic polynomial splits over R.

Proof. Suppose that λ is an eigenvalue with eigenvector x. Then λ〈x, x〉 =
〈λx, x〉 = 〈T (x), x〉 = 〈x, T ∗(x)〉 = 〈x, T (x)〉 = 〈x, λx〉 = λ̄〈x, x〉. Then
λ = λ̄, and so it is real.

Let f(t) be the characteristic polynomial. Then f(t) splits over C. But
since every eigenvalue is real, every root of f(t) is real, and so it must split
over R.

�

Theorem 24. (Spectral theorems for real spaces) Suppose that T : V → V
is linear, V is a finite dimensional real inner product space. Then T is self
adjoint iff it has an ONB of eigenvectors.

Proof. By the above lemma the characteristic polynomial of T splits. So by
theorem 21, let β be ONB such that A := [T ]β is upper triangular. Then
[T ∗]β = A∗ has to be lower triangular. But since A = A∗, it follows that A
is diagonal. So β is a basis of eigenvectors and T is diagonalizable.

�
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In other words, symmetric real matrices are diagonalizable.

Below we briefly state (without proofs), the case of complex spaces.

Definition 25. T : V → V is normal if TT ∗ = T ∗T .

Theorem 26. (Spectral theorem for complex spaces) Suppose that T : V →
V is linear, V is a finite dimensional complex inner product space. Then T
is normal iff it has an ONB of eigenvectors.


