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5.4 Invariant Subspaces and Cayley-Hamilton theorem

The goal of this section is to prove the Cayley-Hamilton theorem:

Theorem 1. LetT : V — V be a linear operator, V finite dimensional, and
let f(t) be the characteristic polynomial of T. Then f(T) =Ty i.e. the zero
linear transformation. In other words T is a root of its own characteristic
polynomial.

Here, if f(t) = ant™ + an_1t" "' + ... + a1t + ag, plugging in T means the
transformation

(1) = anT" + an AT + .+ a1 T + agl

Let us give some simple examples:

Example 1 The identity I : F® — F3 has characteristic polynomial f(t) =

(1 —t)3. Then f(I)= (I —1)? =Ty.
1 05
Example 2 Let A = |0 1 0. Then the characteristic polynomial is
00 2
00 5\°/105
f(t) = (1-t)2(2—t), and f(A) = (A-1)?>(2I3—A) = |0 0 0 010
0 01 000

We will prove the main theorem by using invariant subspaces and showing
that if W is T-invariant, then the characteristic polynomial of T' | W divides
the characteristic polynomial of T'. So, let us recall the definition of a 7-
invariant space:

Definition 2. Given a linear transformationT : V — V| a subspace W C V
is called T-invariant if for all x € W, T(x) € W. For such a W, let
Tw : W — W denote the linear transformation obtained by restricting T to
Wie. forallz e W, Tyw(x) =T(x) € W.

Examples:

(1) v, {0},
(2) ker(T), ran(T),
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(3) E) for any eigenvalue A for T
Let us prove the last item: suppose that v € E). We have to show that
T(v) € Ex. Denote y = T'(v) and compute
T(y)=T(T(v)) =T () = AT(v) = Ay.

So, y is also an eigenvector for X\. Then y = T'(v) € E) as desired.
Next we give another important example of an invariant subspace.

Lemma 3. Suppose that T : 'V — V is a linear transformation, and let
x €V. Then

W = Span({z, T(z), T*(z),...})
is a T-invariant subspace. Moreover, if Z is any other T-invariant subspace
that contains z, then W C Z.

Proof. First we show that W is T-invariant: let y € W. We have to show
that T'(y) € W. Since y € W, by definition, for some natural number n,
y = T"(x). Then T(y) = T (x) e W.

Now suppose that Z is another T-invariant subspace with x € Z.

Claim 4. For everyn > 1, T"(x) € Z.

Proof. For the base case n = 1, since x € Z and Z is T-invariant, it follows
that T'(x) € Z.

For the inductive case, suppose that 7" (z) € Z. Then again, by T-
invariance, we have that 7"!(z) € Z. O

By the claim, we get that W C Z.
O

W as above is called the T-cyclic subspace of V generated by =z.

Example. Let T : R® — R? be given by T'({a,b,c)) = (2a,a + b,0).
Find the T-cyclic subspace of V' generated by e;.
Solution:
e T'(e1) =(2,1,0),
o T2(e1) = T({2,1,0)) = (4,3,0), and so on
Note that T2(e;) is a linear combination of e;,T(e;). Similarly, for any n,
T"(e1) = (a1, az,0) for some aj,ag, and so it is a linear combination of e;
and T'(e7). It follows, that the T-cyclic subspace of V' generated by e is

Span({e1,T(e1)}) = {(a1,a2,0) | a1,a2 € R} = Span({e1,e2}).
Our next lemma generalizes the above example:

Lemma 5. Suppose that T : V. — V s linear, let W be the T-invariant
cyclic subspace generated by x (nonzero vector) with dim(W) = k. Then
{2, T(x),....,T*Y(x)} is a basis for W

Proof. Let m be the largest such that o = {z, T'(z), ..., T (z)} is a linearly
independent. Such m has to exists because W is finite dimensional. Then
we have:
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e m <k, since « C W and dim(W) = k, and
o T (x) € Span(a), by definition of m.
Let Z = Span(a). We claim that Z = W. We know that Z C W because
a C W. For the other direction, by the second part of Lemma 3, it is enough
to show that Z is T-invariant.
To that end, let y € Z; write is a linear combination of the vectors in «,

y = a1z +axT(z) + ... + an,T™ (x).
Compute
T(y) = T(arz+aaT(x) ... +anT™ () = a1 T (x) +aoT?(x)+...amT™ (x).

This is a linear combination of vectors in a and T (z). Since T™(x) €
Span(a), we get T'(y) € Span(a) = Z.
Then « is a basis for W, and so m = |o| = k. O

Before we prove that the characteristic polynomial of Ty divides the
characteristic polynomial of T" where W is T-invariant, we need the following
fact.

Fact 6. Suppose we have an n X n matriz B of the form
A C
75 )
Where A is a k x k matriz. Then det(A) - det(D)

Proof. The proof is by induction on k, expanding along the first column. [J

Lemma 7. Suppose thatT : V — V is linear, V finite dimensions, and W
is a T-invariant subspace. Let Ty : W — W be the linear transformation
obtained by T restricted to W. Then the characteristic polynomial of Ty
divides the characteristic polynomial of T'.

Proof. Let a = {vy,...,v;} be a basis for W, and extend « to a basis =
{v1,..vx, .0} for V. Let A = [Tyy]o and B = [T]g. Then

=t )

. A —tl C
(B —th) = < 0 D- tIn_k>
Then det(B — tl,) = det(A — tI,)g(t). Since the characteristic polynomial
of Ty is det(A —tI,,) and the characteristic polynomial of 7" is det(B —tI,,),
the result follows. O

So,

Lemma 8. Suppose thatT : V — V is linear, V finite dimensional, and let
W be the T-invariant cyclic subspace generated by x (nonzero vector) with
dim(W') = k. Then there are unique scalars ag, ..., a_1, such that

o apz + a;T(z) + ...ap_ T (z) + T*(z) = 0, and
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e the characteristic polynomial of Ty s
f(t) = (—1)k(a0 + a1t + ...ak_ltk_l + tk).

Proof. Recall that we proved a = {z,T(x),...,T*"1(x)} is a basis for W,
That means that 7%(z) is the span of these vectors and the linear combina-
tion is unique. So for some unique scalars aq, ..., ax_1, we get:

apx + alT(:L‘) + ...+ ak_1Tk_1(1‘) + Tk(x) = 6

Next we compute [Tiy],. We have:

o Ty (x)=0x+T(x)+0...+0, so [Tw(z)]. = (0,1,0,...0),
o Ty (T (x)) =T?*(z) = T3 (z), so [Tw(z)]a = (0,0,1,...0),
. .7:W(Tk71( )) = T*(x) = —1(apz + a1 T(x) + ...ar_1 T* (z)), and so
[Tw (T" 1 (x))]a = (—a0, —a1, ... — ar_1),
Then
00 0 —a
1 0 0 —ag
[TW]a = .
00 ... 1 —Qk_—1

One can verify that this matrix has characteristic polynomial

f(t) = (—1)k(a0 + a1t + ...ak_ltk_l + tk)

We are finally ready to prove the Cayley-Hamilton theorem:

Proof of Theorem 1. We have to show that T “satisfies” its characteristic
polynomial. So let f(t) be the characteristic polynomial of 7. Then we
have to show that f(7') is the zero linear transformation. So let x € V. We
have to show that f(T)(z) = 0.

Assume that = is nonzero (otherwise it’s clear). Let W be the T-cyclic
invariant subspace generated by x; dim(W) = k. By the above lemma, fix
coefficients ag, ..., ai, such that

e aor + a1 T(z) + ...ap_1 T () + TF(x) = 0, and
e the characteristic polynomial of Ty is

g(t) = (=1)*(ag + art + ...ap_1t" 1+ t¥).
Then,
g(T)(x) = (=) (aol + a1 T + ...ap_ 1 T* 1 + TF)(z) =

(=1)*(apx + a1 T(z) + ...ax1 T (x) + TF(x)) = 0.
And since g divides f, we get that f(T")(z) = 0.
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6.1, 6.2 Inner Product Spaces and ONB

Let ¢ € F, we will use ¢ to denote complex conjugation. L.e. if ¢ = a + b,
then ¢ = a — bi. If ¢ € R, then ¢ = c.

Definition 9. Let V' be a vector space over F. V is an inner product
space, if we can define an inner product function on pairs of vectors to
values in F,

(z,y) = (2,y) € F
with the following properties:

(1) (z+2zy) = (z,y) + (2,9)
(2) <C@7y> = C<$,y>,

(3) <J),y> i<y7x>7

(4) if 2 0, (z,2) >0,

Definition 10. Let V' be an inner product space. For x € V, define the

norm of z,
lzl] = V/{z, ).

Lemma 11. (Properties of inner product spaces) Let V' be an inner product
space, and x,y,z € V, c € F. Then

(1) {z,y +2) = (z,y) + (2,2)

) (z,cy) = &z, y),

) (2,0) =(0,2) =0,

(x,z) =04 if c =0,

if (x,y) = (x, z) for all x, then y = z.

Lemma 12. (Properties of norms) Let V' be an inner product space over
F,and x,y,z€V,ceF. Then

(1) llez|| = [e] - [|z[l, B

(2) [[z][ =0, ||z|| =0 iff if z =0,

(3) (Cauchy-Schwarz inequality) |{z,y)| < ||z|| - ||yl|,
(4) (Triangle inequality) ||z + y|| < ||z|| + ||yl]-

Examples:

(1) The usual dot product for R™ over R: (z,y) = X1<i<n®iVi;
(2) The conjugate dot product for C" over C: (z,y) = X1<i<n®i¥i;

Definition 13. Let V be an inner product space. Two vectors x,y in 'V are
called orthogonal (or perpendicular) if (x,y) = 0.

A wvector x in 'V is called normal if ||z|| = 0.

A set S is called orthonormal if any two vectors from S are orthogonal
and each x € S is normal.

Lemma 14. If S is a set of pairwise orthogonal nonzero vectors, then S is
linearly independent. So, orthonormal sets are linearly independent.
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Proof. Suppose

aivy + ... + agvg = 0
for vectors vy, ...v in S. Suppose for contradiction some of the a;’s are non
zero. By rearranging if necessary, we may assume that a; # 0. Then

0 = (a1v1 + ... + apvg, v1) = ar{vy, v1) +az(v2, v1) + ...ax(Vg, v1) = a1 (v, v1).

By assumption v; # 0, and so by the properties of inner products (vy,v;) >
0, so a; = 0. Contradiction O

Using a process called Gram-Schmidt orthogonalization, we can obtain
an orthonormal set from any basis, and get the following theorem:

Theorem 15. Let V' be an inner product space of dimension n > 0. Then
there is an orthonormal basis for V. (ONB).

Example: the standard basis is an ONB for F™.

The next lemma illustrates the usefulness of ONBs, in the sense that we
can determine in advance the coefficients of linear combinations and matrix
representations.

Lemma 16. If 8 := {v1,...,v,} is an ONB for V and T : V — V is linear,
then

(1) For everyx €V,
x = (x,v1)v1 + (T, v2)v2 + ... + (T, V)V
(2) If A=[T]p, then the (i, j)-th entry of the matriz is A;; = (T (vj), v;).
Proof. We show the first part. The second is left as an exercise. Fix x € V.
Say © = ajvy + ... + apv,. Then for each 1 < i < mn,
(x,v) = (a1v1 + ... + apvp,v1) = Tgag (v, vi) = a;(vi, v;) = a;.

The above is since for k # i, (vg,v;) = 0 and (v;, v;) = 1.
([

Definition 17. Let S C V be nonempty, V a inner product space. The
orthogonal complement of S is

St={zeV|(z,y) =0 foralyecS}
Fact 18. For any nonempty set S, S* is a subspace.
A couple of examples:
o {0} =V; Vvt ={0},
e in F37 {el}J_ = S’pan({eg,eg}).
6.3, 6.4 Adjoint operators and the Spectral theorem

Let us first look at matrices:
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Definition 19. Let A € My, xn(F). The conjugate transpose of A is the
n X m matriz A* given by setting A’;j = Aj; i.e. we take the conjugate of
each entry and transpose it. We also write A* = At.

We can also define the adjoint for a linear transformations in general.

Theorem 20. Let T : V — V be a linear operator on a finite dimensional
inner product space. Then there is a linear transformation T : V. — V,
such that for all x,y € V,

(T(x),y) = (z,T"(y))-
T* is called the adjoint of T.
Moreover, if § is an ONB, then [T*|g = [T]Z

The following is a key lemma:

Theorem 21. (Schur) Suppose that the characteristic polynomial of T splits.
Then there is an ONB (3 such that [T)g is upper triangular.

Proof. (Outline) By induction on dim(V'). The idea is to pick one eigenvalue
(it exists since the characteristic polynomial splits), then a corresponding
eigenvector z. Then prove that W := Span(z)* is T-invariant and apply
the inductive hypothesis to Tyy.

O

Next we give a condition for a diagonalizability over R.

Definition 22. A linear transformation T : V — V is self-adjoint (Her-
mitian) if T = T*. Similarly, a matriz A is self-adjoint (Hermitian) if
A= A*.

Lemma 23. If T is self adjoint, then every eigenvalue is real and the char-
acteristic polynomial splits over R.

Proof. Suppose that A is an eigenvalue with eigenvector x. Then A(z,x) =
Az, z) = (T(x),2) = (z,T*(z)) = (z,T(x)) = (x,\r) = Xz, x). Then
A =\, and so it is real.

Let f(t) be the characteristic polynomial. Then f(¢) splits over C. But
since every eigenvalue is real, every root of f(t) is real, and so it must split
over R.

O

Theorem 24. (Spectral theorems for real spaces) Suppose that T : V — V
is linear, V' is a finite dimensional real inner product space. Then T 1is self
adjoint iff it has an ONB of eigenvectors.

Proof. By the above lemma the characteristic polynomial of T splits. So by
theorem 21, let 3 be ONB such that A := [T]g is upper triangular. Then
[T*]g = A* has to be lower triangular. But since A = A*, it follows that A
is diagonal. So (3 is a basis of eigenvectors and T is diagonalizable.

O
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In other words, symmetric real matrices are diagonalizable.

Below we briefly state (without proofs), the case of complex spaces.
Definition 25. T: V — V is normal if TT* =T*T.

Theorem 26. (Spectral theorem for complex spaces) Suppose that T : V —
V' is linear, V is a finite dimensional complex inner product space. Then T
is normal iff it has an ONB of eigenvectors.



